
The OpenGL Graphics Interface

Mark Segal

Kurt Akeley

Silicon Graphics Computer Systems

2011 N. Shoreline Blvd., Mountain View, CA 94039

USA

Abstract

Graphics standards are receiving increased attention in the com-

puter graphics community as more people write programs that use 3D

graphics and as those already possessing 3D graphical programs want

those programs to run on a variety of computers.

OpenGL is an emerging graphics standard that provides advanced

rendering features while maintaining a simple programmingmodel. Its

procedural interface allows a graphics programmer to describe render-

ing tasks, whether simple or complex, easily and e�ciently. Because

OpenGL is rendering-only, it can be incorporated into any window

system (and has been, into the X Window System and the soon-to-

be-released Windows NT) or can be used without a window system.

Finally, OpenGL is designed so that it can be implemented to take

advantage of a wide range of graphics hardware capabilities, from a

basic framebu�er to the most sophisticated graphics subsystems.

1 Introduction

Computer graphics (especially 3D graphics, and interactive 3D graphics in

particular) is �nding its way into an increasing number of applications, from

simple graphing programs for personal computers to sophisticated modeling

and visualization software on workstations and supercomputers. As the

interest in computer graphics has grown, so has the desire to be able to

write an application so that it runs on a variety platforms with a range of

graphical capabilites. A graphics standard eases this task by eliminating

the need to write a distinct graphics driver for each platform on which the

application is to run.

1

Several standards have succeeded in integrating speci�c domains of 2D

graphics. The PostScript page description language[4] has become widely

accepted, making it relatively easy to electronically exchange, and, to a

limited degree, manipulate static documents containing both text and 2D

graphics. The X window system[7] has become standard for UNIX worksta-

tions. A programmer uses X to obtain a window on a graphics display into

which either text or 2D graphics may be drawn; X also provides a standard

means for obtaining user input from such devices as keyboards and mice.

The adoption of X by most workstation manufacturers means that a single

program can produce 2D graphics or obtain user input on a variety of work-

stations by simply recompiling the program. This integration even works

across a network: the program may run on one workstation but display on

and obtain user input from another, even if the workstations on either end

of the network are made by di�erent companies.

For 3D graphics, several standards have been proposed, but none has

(yet) gained wide acceptance. One relatively well-known system is PHIGS

(Programmer's Hierarchical Interactive Graphics System). Based on GKS[5]

(Graphics Kernel System), PHIGS is an ANSI (American National Stan-

dards Institute) standard. PHIGS (and its descendant, PHIGS+[9]) pro-

vides a means to manipulate and draw 3D objects by encapsulating object

descriptions and attributes into a display list that is then referenced when

the object is displayed or manipulated. One advantage of the display list is

that a complex object need be described only once even if it is to be dis-

played many times. This is especially important if the object to be displayed

must be transmitted across a low-bandwidth channel (such as a network).

One disadvantage of a display list is that it can require considerable e�ort

to re-specify the object if it is being continually modi�ed as a result of user

interaction. Another di�culty with PHIGS and PHIGS+ (and with GKS)

is that they lack support for advanced rendering features such as texture

mapping.

PEX[8], which is often said to be an acronym for PHIGS Extension to

X, extends X to include the ability to manipulate and draw 3D objects.

(PEXlib[6] is the programmer's interface to the PEX protocol.), Among

other extensions, PEX adds immediate mode rendering to PHIGS, meaning

that objects can be displayed as they are described rather than having to

�rst complete a display list. One di�culty with PEX has been that di�er-

ent suppliers of the PEX interface have chosen to support di�erent features,

making program portability problematic. PEX also lacks advanced render-

ing feaures, and is available only to users of X.

2

2 OpenGL

OpenGL (\GL" for \Graphics Library") provides advanced rendering fea-

tures in either immediate mode or display list mode. While OpenGL is a

relatively new standard, it is very similar in both its functionality and its

interface to Silicon Graphics' IRIS GL, and there are many succesful 3D

applications that currently use IRIS GL for their 3D rendering.

Like the graphics systems already discussed, OpenGL is a software inter-

face to graphics hardware. The interface consists of a set of several hundred

procedures and functions that allow a programmer to specify the objects and

operations involved in producing high-quality graphical images, speci�cally

color images of three-dimensional objects. Like PEX, OpenGL integrates

3D drawing into X, but can also be integrated into other window systems

(e.g. Windows/NT) or can be used without a window system.

OpenGL draws primitives into a framebu�er subject to a number of

selectable modes. Each primitive is a point, line segment, polygon, pixel

rectangle, or bitmap. Each mode may be changed independently; the setting

of one does not a�ect the settings of others (although many modes may

interact to determine what eventually ends up in the framebu�er). Modes

are set, primitives speci�ed, and other OpenGL operations described by

sending commands in the form of function or procedure calls.

Geometric primitives (points, line segments, and polygons) are de�ned

by a group of one or more vertices. A vertex de�nes a point, an endpoint of

an edge, or a corner of a polygon where two edges meet. Data (consisting of

positional coordinates, colors, normals, and texture coordinates) are associ-

ated with a vertex and each vertex is processed independently, in order, and

in the same way. The only exception to this rule is if the group of vertices

must be clipped so that the indicated primitive �ts within a speci�ed region;

in this case vertex data may be modi�ed and new vertices created. The type

of clipping depends on which primitive the group of vertices represents.

OpenGL provides direct control over the fundamental operations of 3D

and 2D graphics. This includes speci�cation of such parameters as trans-

formation matrices, lighting equation coe�cients, antialiasing methods, and

pixel update operators. It does not provide a means for describing or model-

ing complex geometric objects. Another way to describe this situation is to

say that OpenGL provides mechanisms to describe how complex geometric

objects are to be rendered rather than mechanisms to describe the complex

objects themselves.

The model for interpretation of OpenGL commands is client-server.

3

Per−Vertex

Operations

Primitive

Assembly
Rasteriz−

ation

Per−

Fragment

Operations

Pixel

Operations

Display

List

Evaluator
Vertex

Data

Pixel

Data Texture

Memory

Framebuffer

Figure 1. Block diagram of OpenGL.

That is, a program (the client) issues commands, and these commands are

interpreted and processed by OpenGL (the server). The server may or may

not operate on the same computer as the client.

The e�ects of OpenGL commands on the framebu�er are ultimately

controlled by the window system that allocates framebu�er resources. It is

the window system that determines which portions of the framebu�er that

OpenGL may access at any given time and that communicates to OpenGL

how those portions are structured. Similarly, display of framebu�er contents

on a CRT monitor (including the transformation of individual framebu�er

values by such techniques as gamma correction) is not addressed by OpenGL.

Framebu�er con�guration occurs outside of OpenGL in conjunction with the

window system; the initialization of an OpenGL context occurs when the

window system allocates a window for OpenGL rendering. Additionally,

OpenGL has no facilities for obtaining user input, since it is expected that

any window system under which OpenGL runs must already provide such

facilities. These considerations make OpenGL independent of any particular

window system.

3 Basic OpenGL Operation

Figure 1 shows a schematic diagram of OpenGL. Commands enter OpenGL

on the left. Most commands may be accumulated in a display list for pro-

cessing at a later time. Otherwise, commands are e�ectively sent through a

processing pipeline.

The �rst stage provides an e�cient means for approximating curve and

surface geometry by evaluating polynomial functions of input values. The

4

next stage operates on geometric primitives described by vertices: points,

line segments, and polygons. In this stage vertices are transformed and lit,

and primitives are clipped to a viewing volume in preparation for the next

stage, rasterization. The rasterizer produces a series of framebu�er addresses

and values using a two-dimensional description of a point, line segment, or

polygon. Each fragment so produced is fed to the next stage that performs

operations on individual fragments before they �nally alter the framebu�er.

These operations include conditional updates into the framebu�er based

on incoming and previously stored depth values (to e�ect depth bu�ering),

blending of incoming fragment colors with stored colors, as well as masking

and other logical operations on fragment values.

Finally, pixel rectangles and bitmaps bypass the vertex processing por-

tion of the pipeline to send a block of fragments directly through rasteri-

zation to the individual fragment operations, eventually causing a block of

pixels to be written to the framebu�er. Values may also be read back from

the framebu�er or copied from one portion of the framebu�er to another.

These transfers may include some type of decoding or encoding.

3.1 The OpenGL Utility Library

A guiding principle in the design of OpenGL has been to provide program

portability without mandating how higher-level graphical objects must be

described. As a result, the basic OpenGL interface does not support some

geometric objects that are traditionally associated with graphics standards.

For instance, an OpenGL implementation need not render concave polygons.

One reason for this omission is that concave polygon rendering algorithms

are of necessity more complex than those for rendering convex polygons,

and di�erent concave polygon algorithms may be appropriate in di�erent

domains. In particular, if a concave polygon is to be drawn more than once,

it is more e�cient to �rst decompose it into convex polygons (or triangles)

once and then draw the convex polygons.

A general concave polygon decomposer is provided as part of the OpenGL

Utility Library, which is provided with every OpenGL implementation. The

Utility Library also provides an interface, built on OpenGL's polynomial

evaluators, to describe and display NURBS curves and surfaces (with do-

main space trimming), as well as a means for rendering spheres, cones, and

cylinders. The Utility Library serves both as a means to render useful geo-

metric objects and as a model for building other libraries that use OpenGL

for rendering.

5

Object Interpretation of Vertices

point each vertex describes the location of a point

line strip series of connected line segments; each vertex after �rst describes the endpoint of

next segment

line loop same as line strip but �nal segment added from �nal vertex to �rst vertex

separate line each pair of vertex describes a line segment

polygon line loop formed by vertices describes the boundary of a convex polygon

triangle strip each vertex after the �rst two describes a triangle given by that vertex and the

previous two

triangle fan each vertex after the �rst two describes a triangle given by that vertex, the previous

vertex, and the �rst vertex

separate triangle each consecutive triad of vertices describes a triangle

quadrilateral strip each pair of vertices after the �rst two describes a quadrilateral given by that pair

and the previous pair

independent quad each consecutive group of four vertices describes a quadrilateral

Table 1: glBegin/glEnd objects.

4 The OpenGL Pipeline

4.1 Vertices and Primitives

In OpenGL, most geometric objects are drawn by enclosing a series of coor-

dinate sets that specify vertices and optionally normals, texture coordinates,

and colors between glBegin/glEnd command pairs. For example, to spec-

ify a triangle with vertices at (0; 0; 0), (0; 1; 0), and (1; 0; 1), one could write:

glBegin(GL_POLYGON);

glVertex3i(0,0,0);

glVertex3i(0,1,0);

glVertex3i(1,0,1);

glEnd();

The ten geometric objects that are drawn this way are summarized in Ta-

ble 4.1. This particular group of objects was selected because each object's

geometry is speci�ed by a simple list of vertices, because each admits an

e�cient rendering algorithm, and because it was determined that taken to-

gether these objects satisfy the needs of nearly all graphics applications.

Each vertex may be speci�ed with two, three, or four coordinates (four

coordinates indicate a homogeneous three-dimensional location). In addi-

tion, a current normal, current texture coordinates, and current color may

be used in processing each vertex. OpenGL uses normals in lighting calcu-

lations; the current normal is a three-dimensional vector that may be set by

sending three coordinates that specify it. Color may consist of either red,

green, blue, and alpha values (when OpenGL has been initialized to RGBA

6

lighting

Current

Normal

Current

Color

Current

Texture

Coords

texture

matrix

Vertex

Coordinates In

tex. coord.

generation

function

vertex/normal

transformation

Transformed

Vertex

Coordinates

Processed

Color

Processed

Texture

Coordinates

Figure 2. Association of current values with a vertex.

mode) or a single color index value (when initialization speci�ed color index

mode). One, two, three, or four texture coordinates determine how a texture

image maps onto a primitive.

Each of the commands that specify vertex coordinates, normals, col-

ors, or texture coordinates comes in several
avors to accomodate di�ering

application's data formats and numbers of coordinates. Data may also be

passed to these commands either as an argument list or as a pointer to a

block of storage containing the data. The variants are distinguished (in the

C language) by mnemonic su�xes.

Most OpenGL commands that do not specify vertices and associated

information may not appear between glBegin and glEnd. This restric-

tion allows implementations to run in an optimized mode while processing

primitive speci�cations so that primitives may be processed as e�ciently as

possible.

When a vertex is speci�ed, the current color, normal, and texture coor-

dinates are used to obtain values that are then associated with the vertex

(Figure 2). The vertex itself is transformed by the model-view matrix, a

4� 4 matrix which can represent both linear and translational transforma-

tions. The color is obtained from either computing a color from lighting or,

if lighting is disabled, from the current color. Texture coordinates are sim-

7

ilarly passed through a texture coordinate generation function (which may

be the identity). The resulting texture coordinates are transformed by the

texture matrix (this matrix may be used to e�ectively scale or rotate a tex-

ture that is applied to a primitive). Figure 4 shows some results of using

texture coordinate generation functions.

A number of commands control the values of parameters used in process-

ing a vertex. One group of commands manipulates transformation matri-

ces; these commands are designed to form an e�cient means for generating

and manipulating the transformations that occur in hierarchical 3D graph-

ics scenes. A matrix may be loaded or multiplied by a scaling, rotation,

translation, or general matrix. Another command controls which matrix is

a�ected by a manipulation: the model-view matrix, the texture matrix, or

the projectionmatrix (to be described presently). Each of these three matrix

types also has an associated stack onto which matrices may be pushed or

popped.

Lighting parameters are grouped into three categories: material param-

eters, that describe the re
ectance characteristics of the surface being lit,

light source parameters, that describe the emission properties of each light

source, and lighting model parameters, that describe global properties of the

lighting model. Lighting is performed on a per-vertex basis; lighting results

are eventually interpolated across a line segment or polygon. The general

form of the lighting equation includes terms for constant, di�use, and spec-

ular illumination, each of which may be attenuated by the distance of the

vertex from the light source. A programmer may sacri�ce realism in favor of

faster lighting calculations by indicating that the viewer, the light sources,

or both should be assumed to be in�nitely far from the scene. Figure 3

shows some results with lighting disabled and enabled.

4.2 Clipping and Projection

Once a primitive has been assembled from a group of vertices, it is subjected

to clipping by clip planes. The positions of these planes (every OpenGL im-

plementation must provide at least six) is speci�able using the glClipPlane

command. Each plane may be enabled or disabled individually.

In the case of a point, the clip planes either have no e�ect on the point or

annihilate it depending as the point lies inside or outside the intersection of

the half-spaces determined by the clip planes. In the case of a line segment

or polygon, the clip planes may have no e�ect on, annihilate, or alter the

original primitive. In the later case, new vertices may be created between

8

Figure 3. (a) A uniformly colored triangle. (b) A Gouraud shaded triangle.

(c) A scene consisting of many lit, shaded polygons.

edges described by original vertices; color and texture coordinate values

for these new vertices are found by appropriately interpolating the values

assigned to the original vertices.

After the clip planes (if any) have been applied, the vertex coordinates

of the resulting primitive are transformed by the projection matrix. Then

view frustum clipping occurs. View frustum clipping is like clip plane appli-

cation, but with �xed planes: if coordinates after transformation are given

by (x; y; z; w), then the six half spaces de�ned by these planes are �w � x,

x � w, �w � y, y � w, �w � z, z � w.

With view frustum clipping completed, each group of vertex coordinates

is projected by computing x=w, y=w, and z=w. The resulting values (which

must each lie in [-1,1]) are multiplied and o�set by parameters that control

the size of the viewport into which primitives are to be drawn. The glView-

port (for x=w and y=w) and glDepthRange (for z=w) commands control

these parameters.

4.3 Rasterization

Rasterization converts a projected, viewport-scaled primitive into a series of

fragments. Each fragment comprises a location of a pixel in the framebu�er

along with color, texture coordinates, and depth (z). When a line segment

9

or polygon is rasterized, these associated data are interpolated across the

primitive to obtain a value for each fragment.

The rasterization of each kind of primitive is controlled by a correspond-

ing group of parameters. One width a�ects point rasterization and another

a�ects line segment rasterization. Additionally, a stipple sequence may be

speci�ed for line segments, and a stipple pattern may be speicifed for poly-

gons.

Antialiasing may be enabled or disabled individually for each primitive

type. When enabled, a coverage value is computed for each fragment describ-

ing the portion of that fragment that is covered by the projected primitive.

This coverage value is used after texturing has been completed to modify

the fragment's alpha value (in RGBA mode) or color index value (in color

index mode).

4.3.1 Pixel Rectangles and Bitmaps

Pixel rectangles and bitmaps are the two primitives that are una�ected by

the geometric operations that occur in the pipeline prior to rasterization. A

pixel rectangle is a group of values destined for the framebu�er (typically

the values represent colors, although provision is made for other types of

data, such as depth values). The values, stored as a block of data in host

memory, are sent using glDrawPixels. Arguments to glDrawPixels indi-

cate the memory address of the data, the type of data, and the width and

height of the rectangle that the data values form. In addition, two groups

of parameters are maintained that control the decoding of the stored values.

The �rst group describes how the values are packed in memory and provides

a means for selecting a subrectangle from a larger containing rectangle. The

second group controls conversions that may be applied to the values after

they obtained: values may be scaled, o�set and mapped by means of look-

up tables. These various parameters form a
exible means for specifying

rectangular images stored in a variety of formats.

Once obtained, the resulting values produce a rectangle of fragments.

The location of this rectangle is controlled by the current raster position,

which is treated very much like a point (including associating a color and

texture coordinates with it), except that it is set with a separate command

(glRasterPos) that does not occur between glBegin and glEnd. The

rectangle's size is determined by its speci�ed width and height as well as the

setting of pixel rectangle zoom parameters (set with glPixelZoom).

A bitmap is similar to a pixel rectangle, except that it speci�es a rect-

10

Figure 4. (a) A scene with a number of textures mapped onto primitives. (b)

Contouring achieved with texture mapping and a texture coordinate genera-

tion function. (c) Re
ectance mapping with a texture coordinate generation

function.

angle of zeros and ones, and is designed for describing characters that can

be placed at a projected 3D location (through the current raster position).

Each one in the bitmap produces a fragment whose associated values are

those of the current raster position, while each zero produces no fragment.

The glBitmap command also speci�es o�sets that control how the bitmap

is placed with respect to the current raster position and how the current

raster position is advanced after the bitmap is drawn (thus determining the

relative positions of sequential bitmaps).

4.4 Texturing and Fog

OpenGL provides a general means for generating texture-mapped primitives

(Figure 4). When texturing is enabled, each fragment's texture coordinates

index a texture image, generating a texel. This texel may have between

one and four components, so that a texture image may represent, for ex-

ample, intensity only (one component), RGB color (three components), or

RGBA color (four components). Once the texel is obtained, it modi�es the

fragment's color according to a speci�able texture environment.

A texture image is speci�ed using glTexImage, which takes arguments

similar to those of glDrawpixels, so that the same image format may be

used whether that image is destined for the framebu�er or texture memory.

11

In addition, glTexImage may be used to specify mipmaps[3] so that a

texture may be �ltered as it is applied to a primitive. The �lter function (and

whether or not it implies mipmaps) is controlled by a number of speci�able

parameters using glTexParameter. The texture environment is selected

with glTexEnv.

Finally, after texturing, a fog function (if enabled) is applied to each

fragment. The fog function blends the incoming color with a constant (speci-

�able) fog color according to a computed weighting factor. This factor is

a function of the distance (or an approximation to the distance) from the

viewer to the 3D point that corresponds to the fragment. Exponential fog

simulates atmospheric fog and haze, while linear fog may be used to produce

depth-cueing.

4.5 The Framebu�er

The destination of rasterized fragments is the framebu�er, where the results

of OpenGL rendering may be displayed. In OpenGL, the framebu�er con-

sists of a rectangular array of pixels corresponding to the window allocated

for OpenGL rendering. Each pixel is simply a set of some number of bits.

Corresponding bits from each pixel in the framebu�er are grouped together

into a bitplane; each bitplane contains a single bit from each pixel.

The bitplanes are grouped into several logical bu�ers: the color, depth,

stencil, and accumulation bu�ers. The color bu�er is where fragment color

information is placed. The depth bu�er is where fragment depth information

is placed, and is typically used to e�ect hidden surface removal through z-

bu�ering. The stencil bu�er contains values each of which may be updated

whenever a corresponding fragment reaches the framebu�er. Stencil values

are useful in multi-pass algorithms, in which a scene is rendered several

times, to achieve such e�ects as CSG (union, intersection, and di�erence)

operations on a number of objects and capping of objects sliced by clip

planes.

The accumulation bu�er is also useful in multipass algorithms; it can

be manipulated so that it averages values stored in the color bu�er. This

can e�ect such e�ects as full-screen anti-aliasing (by jittering the viewpoint

for each pass), depth-of-�eld (by jittering the angle of view), and motion

blur (by stepping the scene in time)[2]. Multi-pass algorithms are simple to

implement in OpenGL, because only a small number of parameters must be

manipulated before each pass, and changing the values of these parameters

is both e�cient and without side e�ects on the values of other parameters

12

that must remain constant.

OpenGL supports both double-bu�ering and stereo, so the color bu�er

is further subdivided into four bu�ers: the front left & right bu�ers and

the back left & right bu�ers. The front bu�ers are those that are typically

displayed while the back bu�ers (in a double-bu�ered application) are being

used to compose the next frame. A monoscopic application would use only

the left bu�ers. In addition, there may be some number of auxiliary bu�ers

(these are never displayed) into which fragments may be rendered. Any of

the bu�ers may be individually enabled or disabled for fragment writing.

A particular copy of OpenGL may not provide depth, stencil, accumu-

lation, or auxiliary bu�ers. Further, only some subset of the left & right

front and left & right back bu�ers may be present. Di�erent bu�ers may be

available (each with varying numbers of bits) depending on the platform and

window system on which OpenGL is running. Every window system must,

however, provide at least one window type with a front (left) color bu�er,

and depth, stencil, and accumulation bu�ers. This guarantees a minimum

con�guration that a programmer may assume is present no matter where an

OpenGL program is run.

4.6 Per-Fragment Operations

Before being placed into its corresponding frame bu�er location, a fragment

is subjected to a series of tests and modi�cations, each of which may be

individually enabled, disabled, and controlled. The tests and modi�cations

include the stencil test, the depth bu�er test (typically used to achieve

hidden surface removal), and blending. We brie
y describe only a subset of

the tests; for speci�cs, the reader should consult [10].

The stencil test, when enabled, compares the value in the stencil bu�er

corresponding to the fragment with a reference value. If the comparison

succeeds, then the stored stencil value may be modi�ed by a function such

as increment, decrement, or clear, and the fragment proceeds to the next

test. If the test fails, the stored value may be updated using a di�erent

function, and the fragment is discarded. Similarly, the depth bu�er test

compares the fragment's depth value with the corresponding value stored

in the depth bu�er. If the comparison succeeds, the fragment is passed to

the next stage, and the fragment's depth value replaces the value stored in

the depth bu�er (if the depth bu�er has been enabled for writing). If the

comparison fails, the fragment is discarded, and no depth bu�er modi�cation

occurs.

13

Blending mixes a fragment's color with the corresponding color already

stored in the framebu�er (blending occurs once for each color bu�er enabled

for writing). The exact blending function may be speci�ed with glBlend-

Function.

Blending is the operation that actually achieves antialiasing for RGBA

colors. Recall that the coverage computation only modi�es a fragment's

alpha value; this alpha value must be used to blend the fragment color

with the already stored background color to obtain the antialiasing e�ect.

Blending is also used to achieve transparency.

In addition to modifying individual framebu�er values with a series of

fragments, a whole bu�er or bu�ers may be cleared to some speci�able

constant value. Clear values are maintained for the color bu�ers (all color

bu�ers share a single value), the stencil bu�er, the depth bu�er, and the

accumulation bu�er.

4.7 Miscellaneous Functions

4.7.1 Evaluators

Evaluators allow the speci�cation of polynomial functions of one or two

variables whose values determine primitives' vertex coordinates, normal co-

ordinates, color, or texture coordinates. A polynomial map, speci�ed in

terms of the Bezier basis[1] may be given for any of these groups of values.

Once de�ned and enabled, the maps are invoked in one of two ways. The

�rst way is to cause a single evaluation of each enabled map by specifying a

point in the maps' domain using glEvalCoord. This command is meant to

be placed between glBegin and glEnd so that individual primitives may be

built each of which approximates a portion of a curve or surface. The second

method is to specify a grid in domain space using glEvalMesh. Each vertex

of the evaluated grid is a function of the de�ned polynomials. glEvalMesh

generates its own primitives, and thus cannot be placed between glBegin

and glEnd.

The evaluator interface provides a basis for building a more general curve

and surface package on top of OpenGL. One advantage of providing the

evaluators in OpenGL instead of a more complex NURBS interface is that

applications that represent curves and surfaces as other than NURBS or

that make use of special surface properties still have access to e�cient poly-

nomial evaluators (that may be implemented in graphics hardware) without

incurring the costs of converting to a NURBS representation.

14

4.7.2 Display Lists

A display list encapsulates a group of OpenGL commands so that they

may be later issued (in the order originally speci�ed) by simply naming

the display list. This is accomplished by surrounding the commands to

be encapsulated with glBeginList and glEndList. glBeginList takes an

integer argument that is the numeric name of the display list.

Display lists may be rede�ned, but not edited. The lack of editing sim-

pli�es display list memory management in the OpenGL server, eliminating

the performance penalty such management would incur. Display lists may,

however, be nested (one display list may invoke another). An e�ect similar

to display list editing may thus be obtained by: (1) building a list containing

a number of subordinate lists; (2) rede�ning the subordinate lists.

A single display list is invoked with glCallList. glCallLists calls a

series of display lists in succession. Arguments to glCallLists specify an

array of integers that are added to a list base to form the series of display

list numbers. glCallLists is useful to display a string of characters when

the commands that generate each character have been encapsulated in their

own display list. Section 6 gives an example using glCallLists.

4.7.3 Feedback and Selection

As described so far, OpenGL renders primitives into the framebu�er. OpenGL

has two additional modes. Feedback mode returns information about prim-

itives (vertex coordinates, color, and texture coordinates) after they have

been processed but before they are rasterized. This mode is useful, for

instance, if OpenGL output is to be fed to a pen plotter instead of a frame-

bu�er.

In selection mode, OpenGL returns a hit whenever a (clipped) primitive

lies within the view frustum. This mode is used, for instance, to determine

which portions of a scene lie within a region of the window centered around

the mouse position (this is often termed picking). The Utility Library pro-

vides routines to manipulate the transformations so that when the scene is

redrawn, only those portions that lie within a speci�ed region about a spec-

i�ed position will return hits. Each hit returns the contents of the selection

stack, which may be manipulated as the scene is drawn. By appropriately

manipulating the stack, the application can identify the scene features that

intersected the selection region.

15

4.7.4 OpenGL State

Finally, the value of nearly any OpenGL parameter may be obtained by

an appropariate get command. There is also a stack of parameter values

that may be pushed and popped. For stacking purposes, all parameters are

divided into 21 functional groups; any combination of these groups may be

pushed onto the attribute stack in one operation (a pop operation automat-

ically restores only those values that were last pushed). The get commands

and parameter stacks make it possible to implement various libraries, each

without interfering with another's OpenGL usage.

5 Integration in a Window System

OpenGL draws 3D and 2D scenes into a framebu�er, but to be useful in a

heterogeneous environment, OpenGL must be made subordinate to a win-

dow system that allocates and controls framebu�er resources. We describe

how OpenGL is integrated into the X Window System, but integration into

other window systems (Windows NT, for instance) is similar.

X provides both a procedural interface and a network protocol for creat-

ing and manipulating framebu�er windows and drawing certain 2D objects

into those windows. OpenGL is integrated into X by making it a formal

X extension called GLX. GLX consists of about a dozen calls (with corre-

sponding network encodings) that provide a compact, general embedding

of OpenGL in X. As with other X extensions (two examples are Display

PostScript and PEX), there is a speci�c network protocol for OpenGL ren-

dering commands encapsulated in the X byte stream.

OpenGL requires a region of a framebu�er into which primitives may be

rendered. In X, such a region is called a drawable. A window, one type of

drawable, has associated with it a visual that describes the window's frame-

bu�er con�guration. In GLX, the visual is extended to include information

about OpenGL bu�ers that are not present in unadorned X (depth, stencil,

accumulation, front, back, etc.).

X also provides a second type of drawable, the pixmap, which is an o�-

screen framebu�er. GLX provides a GLX pixmap that corresponds to an X

pixmap, but with additional bu�ers as indicated by some visual. The GLX

pixmap provides a means for OpenGL applications to render o�-screen into

a software bu�er.

To make use of an OpenGL-capable drawable, the programmer creates an

OpenGL context targeted to that drawable. When the context is created,

16

Application

and Toolkit

GLX
GLX Client

X Server

Xlib
Direct

OpenGL

Renderer

Dispatch

X Renderer

OpenGL

Renderer

Other Renderers

Framebuffer

Figure 5. GLX client, X server, and OpenGL renderers.

a copy of an OpenGL renderer is initialized with the visual information

about the drawable. This OpenGL renderer is conceptually (if not actually)

part of the X server, so that, once created, an X client may connect to

the OpenGL context and issue OpenGL commands (Figure 5). Multiple

OpenGL contexts may be created that are targeted to distinct or shared

drawables. Any OpenGL-capable drawable may also be used for standard

X drawing (those bu�ers of the drawable that are unused by X are ignored

by it). Calls are provided to synchronize drawing between OpenGL and X;

it is the client's responsibility to carry out this synchronization if required.

A GLX client that is running on a computer of which the graphics sub-

system is a part may avoid passing OpenGL tokens through the X server.

Such direct rendering may result in increased graphics performance since the

overhead of token encoding, decoding, and dispatching is eliminated. Direct

rendering is supported but not required by GLX (a client may determine

whether or not a server provides direct rendering). Direct rendering is feasi-

ble because sequentiality need not be maintained between X commands and

OpenGL commands except where commands are explicitly synchronized.

17

6 Example: Three Kinds of Text

To illustrate the
exibility of OpenGL in performing di�erent types of ren-

dering tasks, we outline three methods for the particular task of displaying

text. The three methods are: using bitmaps, using line segments to generate

outlined text, and using a texture to generate antialiased text.

The �rst method de�nes a font as a series of display lists, each of which

contains a single bitmap:

for i = start + 'a' to start + 'z' {

glBeginList(i);

glBitmap(...);

glEndList();

}

Recall that glBitmap speci�es both a pointer to an encoding of the bitmap

and o�sets that indicate how the bitmap is positioned relative to previous

and subsequent bitmaps. In GLX, the e�ect of de�ning a number of display

lists in this way may also be achieved by calling glXUseXFont. glXUseXFont

generates a number of display lists, each of which contains the bitmap (and

associated o�sets) of a single character from the speci�ed X font. In either

case, the string \Bitmapped Text" whose origin is the projection of a location

in 3D is produced by

glRasterPos3i(x, y, z);

glListBase(start);

glCallLists("Bitmapped Text", 14, GL_BYTE);

See Figure 6a. glListBase sets the display list base so that the subsequent

glCallLists references the characters just de�ned. The second argument to

glCallLists indicates the length of the string; the third argument indicates

that the string is an array of 8-bit bytes (16- and 32-bit integers may be used

to access fonts with more than 256 characters).

The second method is similar to the �rst, but uses line segments to

outline each character. Each display list contains a series of line segments:

glTranslate(ox, oy, 0);

glBegin(GL_LINES);

glVertex(...);

...

glEnd();

glTranslate(dx-ox, dy-oy, 0);

18

The initial glTranslate updates the transformation matrix to position the

character with respect to a character origin. The �nal glTranslate updates

that character origin in preparation for the following character. A string is

displayed with this method just as in the previous example, but since line

segments have 3D position, the text may be oriented as well as positioned

in 3D (Figure 6b). More generally, the display lists could contain both

polygons and line segments, and these could be antialiased.

Finally, a di�erent approach may be taken by creating a texture image

containing an array of characters. A certain range of texture coordinates

thus corresponds to each character in the texture image. Each character

may be drawn in any size and in any 3D orientation by drawing a rectangle

with the appropriate texture coordinates at its vertices:

glTranslate(ox, oy, 0);

glBegin(GL_QUADS)

glTexCoord(...);

glVertex(...);

...

glEnd();

glTranslate(dx-ox, dy-oy, 0);

If each group of commands for each character is enclosed in a display list,

and the commands for describing the texture image itself are enclosed in

another display list called TEX, then the string \Texture mapped text!!"

may be displayed by:

glCallList(TEX);

glCallLists("Texture mapped text!!", 22, GL_BYTE);

One advantage of this method is that, by simply using appropriate texture

�ltering, the resulting characters are antialiased (Figure 6c).

7 Conclusion

OpenGL is a
exible procedural interface that allows a programmer to de-

scribe a variety of 3D rendering tasks. It does not enforce a particular

method of describing 3D objects, but instead provides the basic means by

which those objects, no matter how described, may be rendered. This mech-

anistic view of rendering provides for e�cient use of graphics hardware,

19

Figure 6. (a) Bitmap example. (b) Stroke font example. (c) Texture mapped

font example.

whether that hardware is a simple framebu�er or a graphics subsystem ca-

pable of directly manipulating 3D data. OpenGL is rendering-only, so it

is independent of the methods by which user input and other window sys-

tem functions are achieved, making the rendering portions of a graphical

program that uses OpenGL platform-independent.

Because OpenGL imposes minimum structure on 3D rendering, it is an

excellent base on which to build libraries for handling structured geomet-

ric objects, no matter what the particular structures may be. Examples of

such libraries include object-oriented graphics toolkits that provide meth-

ods to display and manipulate complex objects endowed with a variety of

attributes[11][12]. A library that uses OpenGL for its rendering inherits

OpenGL's platform independence, making such a library available to a wide

programming audience.

References

[1] Gerald Farin. Curves and Surfaces for Computer Aided Geometric De-

sign. Academic Press, Boston, Ma., second edition, 1990.

[2] Paul Haeberli and Kurt Akeley. The accumulation bu�er: Hardware

support for high-quality rendering. In Proceedings of SIGGRAPH '90,

pages 309{318, 1990.

20

[3] Paul S. Heckbert. A survey of texture mapping. IEEE CG & A, pages

56{67, November 1986.

[4] Adobe Systems Incorporated. PostScript Language Reference Manual.

Addison-Wesley, Reading, Mass., 1986.

[5] International Standards Organization. International standard infor-

mation processing systems | computer graphics | graphical kernel

system for three dimensions (GKS-3D) functional description. Techni-

cal Report ISO Document Number 9905:1988(E), American National

Standards Institute, New York, 1988.

[6] Je� Stevenson. PEXlib speci�cation and C language binding, version

5.1P. The X Resource, Special Issue B, September 1992.

[7] Adrian Nye. X Window System User's Guide, volume 3 of The De�ni-

tive Guides to the X Window System. O'Reilly and Associates, Se-

bastapol, Ca., 1987.

[8] Paula Womack, ed. PEX protocol speci�cation and encoding, version

5.1P. The X Resource, Special Issue A, May 1992.

[9] PHIGS+ Committee, Andries van Dam, chair. PHIGS+ functional

description, revision 3.0. Computer Graphics, 22(3):125{218, July 1988.

[10] Mark Segal and Kurt Akeley. The OpenGL graphics system: A speci-

�cation. Technical report, Silicon Graphics Computer Systems, Moun-

tain View, Ca., 1992.

[11] Paul S. Strauss and Rikk Carey. An object-oriented 3D graphics toolkit.

In Proceedings of SIGGRAPH '92, pages 341{349, 1992.

[12] Garry Wiegand and Bob Covey. HOOPS Reference Manual, Version

3.0. Ithaca Software, 1991.

21

